Abstracts 37

2P.29 Aqueous access channels in subunit a of sodium transporting F_0F_1 -ATP synthase

Hiroki Sato¹, Noriyo Mitome¹,

Toshiharu Suzuki², Masasuke Yoshida^{1,2,3}

¹Chemical Resources Laboratory, Tokyo Institute of Technology, Japan

²ATP Synthesis Regulation Project ICORP,

Japan Science and Technology Corporation, Japan

³Faculty of Engineering, Kyoto Sangyo University, Japan

E-mail: nmitome@res.titech.ac.jp

F_OF₁-ATP synthase (F_OF₁) is the enzyme that synthesizes ATP from ADP and phosphoric acid by using the electrochemical potential gradient of the ion (H⁺ or Na⁺) between inside and outside of the membrane. The F_O works as an ion channel in the membrane. The ion channels are thought to be composed of the acidic residue of c-ring located at the center of the membrane and two half-channels. It has been reported that both periplasmic and cytoplasmic sides of the H⁺ half-channels in H⁺-transporting F₀F₁ exist in a subunit. In contrast, it has been proposed that the periplasmic side of the Na⁺ halfchannels in Na+-transporting F_OF₁ exists in a subunit and the cytoplasmic side exists in c-ring. However it is unclear where the Na⁺ half-channels are because the cytoplasmic side of the Na⁺ halfchannels is not found from the structure of c-ring. In this study, we examined aqueous accessibility of a transmembrane helix of Na⁺transporting F_O by reactivity of cysteine substituted residue using a hybrid F_OF₁ (F₁ from thermophilic Bacillus PS3 and Na⁺-transporting Fo from Propionigenium modestum). We predicted that both periplasmic and cytoplasmic sides of the Na⁺ half-channels in Na⁺transporting F₀F₁ existed in a subunit as the H⁺ half-channels. Then, Cys residues were introduced into a subunit from aI211 to aV236 except aR226. After the modification of Cys of the mutant F₀F₁ with N-ethylmaleimide (NEM), the labeling yield of Cys by NEM and the ATP synthesis activity were examined. When Cys of G215C, K219C and N230C was labeled at 50% labeling yield, 40% of ATP synthesis activity was lost. These amino acid residues were accessible from outside of the membrane. In these mutants, ATP synthesis activity was inhibited because the modified Cys with NEM blocked Na⁺ transport. Therefore, it was suggested that G215C and K219C in the cytoplasmic side and N230C in the periplasmic side were the amino acid residues that formed the Na⁺ half-channels. It was suggested that both periplasmic and cytoplasmic sides of the Na⁺ half-channels in Na+-transporting F₀F₁ existed in a subunit as the H⁺ halfchannels.

doi:10.1016/j.bbabio.2010.04.126

2P.30 On the rotary mechanism of F₁F₀-ATP synthases

Denys Pogoryelov¹, Alexander Krah², Julian Langer³, José D. Faraldo-Gómez^{2,4}, Thomas Meier^{1,4}

¹Max Planck Institute of Biophysics, Department of Structural Biology, Frankfurt am Main, Germany

²Max Planck Institute of Biophysics,

Theoretical Molecular Biophysics Group, Frankfurt am Main, Germany ³Max Planck Institute of Biophysics,

Department of Molecular Membrane Biology, Frankfurt am Main, Germany ⁴Max Planck Institute of Biophysics, Cluster of Excellence Macromolecular Complexes, Frankfurt am Main, Germany

E-mail: Denys.Pogoryelov@mpibp-frankfurt.mpg.de

The mechanism of the F_1F_O ATP synthase couples the downhill membrane translocation of H^+ or Na^+ to the rotation of an oligomeric ring of c-subunits (c-ring) in the F_O motor. The torque is transduced into the F_1 motor, which causes sequential conformational changes in the catalytic centers, finally resulting in the

generation of ATP. The design of the c-ring rotor provides the ion binding specificity and contributes to the translocation of the ions through the membrane during enzyme operation. The crystal structure of the c_{15} ring of the F_1F_0 -ATP synthase from $Spirulina\ platensis$ has been solved at 2.1 Å resolution [1]. The way the proton is bound to this c-ring proposes that all ion binding sites of the c-ring remain in the $proton\ locked$ conformation while exposed to the membrane, whereas exposure to a more hydrophilic environment can unlock the ion binding site and promote ion release. This model is supported by combined structural, biochemical and $in\ silico\ generated\ data\ of\ the\ proton\ binding\ site.$

Reference

[1] Pogoryelov D et al. (2009) Nat. Struct. Mol. Biol. 16: 1068-1073.

doi:10.1016/j.bbabio.2010.04.127

2P.31 The crystal structure of bovine mitochondrial F_1 -ATPase, grown in the presence of phosphonate reveals a new intermediate in the catalytic cycle

David M. Rees¹, Andrew G.W. Leslie², John E. Walker¹

¹The Medical Research Council Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 2XY, UK

²The Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK E-mail: walker@mrc-mbu.cam.ac.uk

The ground state structure of yeast F₁-ATPase has a phosphate ion bound in the β_E -subunit, whereas the ground state structure of bovine F₁-ATPase does not ^[1]. In order to try and gain structural information about the phosphate binding site in the bovine enzyme, crystals were grown in the presence of ADP, magnesium ions and the phosphate analogue, phosphonate. The structure solved to 2.5 Å resolution reveals surprisingly that ADP is bound in the nucleotide binding domains of all three catalytic subunits. However, the ADP molecule bound in the β_E -subunit does not have an associated magnesium ion, whereas a magnesium ion is bound in the β_{DP} - and β_{TP} -subunits, as in other structures of F₁-ATPase. In these respects, the structure is similar to that of yeast F_1 -ATPase inhibited with residues 1–52 of yeast IF_1 [2]. This latter structure has been interpreted as representing a posthydrolysis state in which the magnesium ion has been released from the catalytic site before ADP. No electron density was observed that could be interpreted as bound phosphonate, and its probable role appears to be to chelate divalent metal cations, including magnesium ions, rather than acting as a phosphate analogue.

References

- [1] Bowler MW, Montgomery MG, Leslie AGW, Walker JE (2007) *J. Biol. Chem.* **282:** 14238–14242.
- [2] Robinson GC, Montgomery MG, Mueller DM, Leslie AGW, Walker JE (2010) In preparation.

doi:10.1016/j.bbabio.2010.04.128

2P.32 The structure at 2.5 Å resolution of the complex of F_1 -ATPase from Saccharomyces cerevisiae inhibited with yeast IF_1

Graham C. Robinson¹, Martin G. Montgomery¹, David M. Mueller², Andrew G.W. Leslie³, John E. Walker¹

¹MRC Mitochondrial Biology Unit, Cambridge, UK

²Rosalind Franklin University of Medicine and Science, Chicago, USA

³MRC Laboratory of Molecular Biology, Cambridge, UK

E-mail: walker@mrc-mbu.cam.ac.uk

38 Abstracts

F₁-ATPase from Saccharomyces cerevisiae was inhibited under conditions of ATP hydrolysis with a fragment of yeast IF₁ consisting of residues 1-53 (known as yI1-53). The complex was crystallised in the presence of 0.5 mM ADP and 1.5 mM ATP. In the inhibited structure, residues 17-40 of yI1-53 form an α -helix, of which residues 17-35 are bound in a cleft between the C-terminal domains of the α_{DP} - and β_{DP} -subunits, and residues 36–40 of this α -helix extend beyond the external surface of the F_1 -domain. The α -helix interacts mainly with the $\beta_{DP}\text{-subunit,}$ but also with subunits α_{DP} and β_{TP} . Residues 1–16 of yI1–53 form a loop from residues 6 to 16 held together by a salt bridge (residues R9 and D15) and a hydrogenbonding network involving residues S4, R9 and D15 and residue R9 of the γ -subunit. The N-terminal region from residues 1 to 5 extends into the central aqueous cavity of the enzyme around the central stalk and makes contacts with the $\alpha_{\text{E}}\text{--}, \beta_{\text{DP}}\text{--}$ and $\gamma\text{--subunits}.$ Many aspects of this structure are similar to those of the structure of bovine F₁-I1-60 [1]. However, the structures differ in several significant respects. First, the α -helix of yI1-53 is tilted more steeply (relative to the central stalk) than its counterpart in the bovine structure, and so the detailed interactions that contribute to binding differ in some respects. Second, the loop structure in residues 6-16 of vI1-53 replaces a second short α-helix from residues 13 to 17 of bovine I1-60. Third, the structures differ in the nucleotide occupancies of catalytic subunits; bovine F₁-I1-60 contains inorganic phosphate bound to the P-loop in the β_F -subunit whereas the β_F -subunit in the yeast complex contains ADP, but no magnesium. In both structures, the β_{DP} - and β_{TP} -subunits are occupied by magnesium ADP. The bovine structure was interpreted as representing a post-hydrolysis "dead-end" state [1], whereas the yeast structure appears to represent a post-hydrolysis, pre-product release intermediate that precedes the "ground state" structure of the enzyme in the hydrolytic cycle.

Reference

[1] Gledhill JR et al. (2007) Proc. Natl. Acad. Sci. 40: 15671-15676.

doi:10.1016/j.bbabio.2010.04.129

2P.33 Kinetic equivalence of membrane potential and pH difference across membrane in ATP synthesis by *Bacillus* PS3 F_0F_1 -ATP synthase

Naoki Soga¹, Kazuhiko Kinosita Jr.¹, Masasuke Yoshida^{2,3}, Toshiharu Suzuki²
¹Department of Physics, Waseda University, Japan
²ICORP ATP-Synthesis Regulation Project,
Japan Science and Technology Agency (JST), Japan
³Deptartment of Molecular Bioscience, Kyoto Sangyo University, Japan E-mail: naosoga@akane.waseda.jp

 F_OF_1 -ATP synthase synthesizes ATP by using proton motive force (pmf) that consists of transmembrane gradients of electrical potential $(\Delta\psi)$ and proton concentration (ΔpH) . The two terms are thermodynamically equivalent according to the chemiosmotic theory of P. Mitchell [1]. But their kinetic equivalence to drive F_O has been reported to be varied by the source of F_OF_1 s and preparations. Here, using Bacillus PS3 F_OF_1 (TF_OF_1) with a mutation lacking inhibitory effect of ε , we have developed simple and highly reproducible procedures to prepare active proteoliposomes and to analyze kinetics of ATP synthesis which was driven by acid–base transition and $K^+/$ valinomycin diffusion potential. TF_OF_1 showed maximum rates of ATP synthesis of $18 \, s^{-1}$ at 30° with $K_m s$ for ADP and Pi, 19 and $500 \, \mu M$, respectively. Then, the rates of ATP synthesis were determined under several combinations of $\Delta\psi$ and ΔpH . The rates were highly correlated to the pmf value calculated from $\Delta\psi$ and ΔpH , although

small deviation still remains. Osmotic imbalance between inside and outside of proteoliposomes has only little effect on the kinetics. Importantly, when K^+ concentration inside proteoliposomes is decreased below about 3 mM, it appears that Nernst equation tends to overestimate the valinomycin-induced $\Delta\psi$, which is one of the reasons of the deviation. Taking these results into consideration, we propose that rates of ATP synthesis are solely dependent on the magnitude of pmf but not on each of $\Delta\psi$ and ΔpH .

Reference

[1] Mitchell P (1961) Nature 191: 144-148.

doi:10.1016/j.bbabio.2010.04.130

2P.34 Isolation of the H^+ -ATP synthase from *E. coli* and the stability of its subcomplexes

Ilka Starke, Sabrina Loschonsky, Susanne Fischer, Peter Gräber Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Germany

E-mail: ilka.starke@physchem.uni-freiburg.de

The H⁺-ATP synthase from *E. coli* (EFOF₁) and the hydrophilic part (EF₁) are isolated. The enzyme detergent micelles are purified either by sucrose density centrifugation or by ion exchange chromatography followed by gel permeation chromatography. For activity measurements EFOF₁ is reconstituted into phosphatidylcholine/phosphatidic acid liposomes and a transmembrane pH-difference is generated by an acid base transition. The initial rate of ATP synthesis is measured with luciferin/luciferase. The activity of EF₁ is measured by ATP hydrolysis with an ATP regenerating system. Analysis of the different fractions obtained after gel permeation chromatography reveals that the highest ATP synthesis activities and the highest ATP hydrolysis activities are found in different fractions, although the SDS-PAGE does not reveal significant differences in subunit composition of these fractions. Since the e-subunit is known to act as inhibitor of ATP hydrolysis without a significant effect on ATP synthesis, the dissociation of this subunit from the different subcomplexes was investigated. The dissociation constant of e was determined as described in [1]. The following dissociation constants are found: $K_D = 5.2$ nM for EF₁, $K_D = 0.7$ nM for EFOF₁ micelles, and $K_D = 0.1$ nM for EFOF₁ liposomes.

Reference

[1] Smith JB, Sternweis PC (1980) Biochemistry 19: 526–531.

doi:10.1016/j.bbabio.2010.04.131

2P.35 Biochemical and single-molecule analyses of human F_1 -ATPase

Toshiharu Suzuki¹, Chiaki Wakabayashi¹, Ei-ichiro Saita¹, Kazumi Tanaka¹, Shou Furuike², Kazuhiko Kinosita, Jr.³, Masasuke Yoshida^{1,4}

¹ICORP ATP-synthesis regulation project, Japan Science and Technology Agency, Japan

²Department of Physiology, Division of Life Science, Osaka Medical College, Japan

³Department of Physics, Faculty of Science and Engineering, Waseda Univ, Japan

⁴Department of Molecular Bioscience, Kyoto Sangyo University, Japan E-mail: toshisuz@atp.miraikan.jst.go.jp